
Iris: an Extensible Application for Building and Analyzing
Spectral Energy Distributions

Omar Laurinoa,∗, Jamie Budynkiewicza, Raffaele D’Abruscoa, Nina Bonaventuraa,1, Ivo Buskob, Mark
Cresitello-Dittmara, Stephen M. Doea,2, Rick Ebertc, Janet D. Evansa, Patrick Norrisd, Olga Pevunovac, Brian

Refsdala, Brian Thomasd, Randy Thompsonb

aSmithsonian Astrophysical Observatory, 60 Garden St. Cambridge, MA 02138
bSpace Telescope Science Institute, 3700 San Martin Dr. Baltimore, MD 21218

cInfrared Processing and Analysis Center, 770 South Wilson Ave. Pasadena, CA 91125
dNational Optical Astronomy Observatory, 950 N Cherry Ave. Tucson, AZ 85719

Abstract

Iris is an extensible application that provides astronomers with a user-friendly interface capable of ingesting broad-band
data from many different sources in order to build, explore, and model spectral energy distributions (SEDs). Iris takes
advantage of the standards defined by the International Virtual Observatory Alliance, but hides the technicalities of
such standards by implementing different layers of abstraction on top of them. Such intermediate layers provide hooks
that users and developers can exploit in order to extend the capabilities provided by Iris. For instance, custom Python
models can be combined in arbitrary ways with the Iris built-in models or with other custom functions. As such, Iris
offers a platform for the development and integration of SED data, services, and applications, either from the user’s
system or from the web. In this paper we describe the built-in features provided by Iris for building and analyzing SEDs.
We also explore in some detail the Iris framework and software development kit, showing how astronomers and software
developers can plug their code into an integrated SED analysis environment.

Keywords: data abstraction, method: data analysis, object-oriented programming, software frameworks, spectral
energy distribution, virtual observatory tools

1. Introduction

The emission processes of astronomical objects (e.g.,
stars, galaxies, quasars) are reflected in the spectral en-
ergy distribution (SED) of the radiation detected by as-
tronomers with a variety of telescopes and instruments.
Astronomers use this information to infer the physical
properties of the source by comparing the detected SED
with different emission models. Methods for these studies
have been developed by several communities in astronomy,
focused on either a particular type of source, or quite of-
ten on a particular region of the emission spectrum (e.g.,
radio, optical-IR, X-ray). These focused tools typically
require different input formats and imply the use of wave-
length specific units, as well as being optimized for partic-
ular models to compare the SED with. However, the most
complete picture of any emission phenomena requires the
use of the most complete information base. Modern wide-
field ground and space telescopes, and the availability of

∗Corresponding author
Email address: olaurino@cfa.harvard.edu (Omar

Laurino)
1Present affiliation: McGill University, 3600 University St.

Montréal QC, Canada H3A 2T8
2Present address: 4 Lafayette Drive, East Walpole, MA 02032

data from multi-wavelenth archives, allow in principle to
build and study broadband SEDs for any kind of astro-
nomical object. However, a tool that can efficiently and
powerfully make use of this information requires a non-
wavelength-specific approach.

The International Virtual Observatory Alliance
(IVOA; Quinn et al., 2004) provides a set of standards
and protocols that facilitate interoperability among
astronomy-related services and tools. These IVOA speci-
fications can be implemented to enable generalized SED
analysis, regardless of the spectral regime and objects
being studied.

In order to design effective applications, one wants to
leverage IVOA standards without exposing the complexity
and technicality of their specifications to the users. Also,
while application developers implement many desired fea-
tures, it is useful, and sometimes required, to provide
hooks for users and third party developers to extend the
application’s functionality without requiring knowledge of
standards themselves. Designing such an application, like
a general SED analysis tool, thus becomes an exercise in
designing a framework that implements some basic, effec-
tive functionality for a wide set of use cases, while being
highly extensible.

Preprint submitted to Astronomy and Computing July 28, 2014

ar
X

iv
:1

40
7.

69
16

v1
 [

as
tr

o-
ph

.I
M

]
 2

5
Ju

l 2
01

4

Iris, the Virtual Astronomical Observatory (VAO; Ber-
riman et al., 2012) SED analysis tool, is such an IVOA-
enabled desktop application. With Iris, users may popu-
late SEDs with data from files, built-in portals to data
archives, and other Virtual Observatory (VO) applica-
tions. Users can interactively visualize and edit SEDs, and
fit SEDs with fine-tuned modeling features. Iris provides
a suite of astrophysical models, but also lets users import
custom models and template libraries. All front-end fea-
tures of Iris completely hide the underlying technical IVOA
specifications from the user.

While implementing IVOA standards and proto-
cols, we took advantage of existing astronomy software,
namely Specview (Busko, 2002) for the visualization and
fitting user interfaces, the NASA/IPAC Extragalactic
Database (NED) SED Service3 for data acquisition, and
Sherpa (Freeman et al., 2001, Refsdal et al., 2009) for the
modeling and fitting engine. Along with these compo-
nents, new ones, like the SED Builder, were developed
specifically for Iris (Doe et al., 2012, Laurino et al., 2013).

Iris was developed inside the framework of the VAO
science applications: the different components were con-
tributed by developers from the Smithsonian Astrophys-
ical Observatory, the Space Telescope Science Institute
(STScI), and the NASA Infrared Processing and Analy-
sis Center (IPAC). Quality assurance and testing were led
by team members at the National Optical Astronomy Ob-
servatory and STScI.

In this paper we present the Iris application, design,
and extensible architecture. In Section 2 we briefly ex-
plore the landscape of SED applications and analysis tools
that Iris joined, and provide an example use-case of Iris.
We explore how astronomers can include their own mod-
els or templates as Python functions in Section 3. An
introduction to Iris’ general architecture (the Iris stack) is
illustrated in Section 4. A more detailed overview of the
Iris extensible framework design (Section 5) is followed by
a detailed description of the more advanced Iris capabil-
ities (Section 6). Finally, we describe the Iris software
development kit, including a “How-to” on extending Iris
with plug-ins (Section 7). Sections 5 and 7 are targeted to
software developers.

The paper refers to version 2.0.1 of Iris. Iris can be
downloaded as a binary archive for OS X and Linux4, and
the source code is hosted on GitHub as a public reposi-
tory5.

2. SED Analysis with Iris

Fitting spectral energy distributions enables astron-
omers to estimate fundamental properties of various astro-
nomical objects. In galaxy evolution studies, for example,

3http://vo.ned.ipac.caltech.edu/SED_Service/
4http://cxc.cfa.harvard.edu/iris/latest/download/
5https://github.com/ChandraCXC/iris

stellar mass, star formation rates, dust content, and red-
shift are often derived from galaxy SEDs (e.g.Sawicki and
Yee (1998), Shapley et al. (2001), Robitaille et al. (2007),
and many others). Accretion disks surrounding supermas-
sive black holes, x-ray binary and young stellar objects can
be studied by fitting models to the host objects’ SEDs,
extracting information like accretion rates, disk geometry,
and disk temperature (e.g., Czerny and Elvis, 1987, Vr-
tilek et al., 1990, Chiang and Goldreich, 1997, Robitaille
et al., 2006). Stellar SED analysis can recognize mid IR
excess, which may indicate circumstellar disks (Lagrange
et al., 2000, Chen et al., 2005). As these examples show,
SEDs are widely used throughout astronomy.

With ever increasing wide-field surveys and datasets
over the years, astronomers have been able to use multi-
wavelength SEDs more frequently for their research. As
such, many robust SED analysis codes have been created
to help astronomers model, fit, and derive physical quan-
tities from SEDs (Walcher et al., 2011, Conroy, 2013).
These widely-used codes implement a diverse set of meth-
ods, for instance: inversion (e.g., STARLIGHT [Cid Fer-
nandes et al., 2004] and PAHFIT [Smith et al., 2007]),
principal component analysis (e.g., Budavári et al., 2009),
χ2-minimization codes (e.g., Le PHARE [Arnouts et al.,
1999, Ilbert et al., 2006] and HyperZ [Bolzonella et al.,
2000]), and Bayesian inference (e.g., BPZ [Beńıtez, 2000],
VOSA [Bayo et al., 2008], and GalMC [Acquaviva et al.,
2011]).

Most widely used fitting packages are tailored for spe-
cific data sets or spectral ranges (such as PAHFIT and
STARLIGHT), providing robust fitting methods and re-
sults. They require the data to be in a specific format with
specific units in order for the tool to work properly. When
fitting a broadband SED that spans over decades in the
spectrum, the astronomer will typically gather datasets
from different public archives and colleagues in order to
add such data to their own. More often than not, the
datasets are stored in different file formats and units. The
user must provide their own methods to extract the neces-
sary data from each file, homogenize the units, and output
a file in the format supported by the tool; converting the
data to a supported format may easily become a tedious
task with each additional dataset.

While SED analysis tools often have different input
formats from each other, they effectively require the same
information to run. Whether datasets are stored in a FITS
file, a tab-separated ASCII table, or a VOTable (Ochsen-
bein et al., 2011) coming from a VO data discovery appli-
cation, they are all serializations of the same, global, ab-
stract, scientific model of photometric measurements for
astronomical sources.

By employing a standardized definition of such models,
Iris streamlines the process of building SEDs for analysis.
In other terms, one of the goals of Iris is to make SED
building a painless and straightforward process, letting the
scientist focus on the sophisticated and original parts of
the scientific work-flow: data analysis, hypothesis testing,

2

http://vo.ned.ipac.caltech.edu/SED_Service/
http://cxc.cfa.harvard.edu/iris/latest/download/
https://github.com/ChandraCXC/iris

Table 1: Supported file formats. Native formats are automatically loaded into Iris. Supported formats require some user input to map
the file data to the spectral and flux information.

Format Description

VOTable XML-based format, text or binary following IVOA Spectrum Data Model v1.0, 1.1, or 1.2.

N
at

iv
e

FITS
Series of HDUsa with text header and text or binary data extensions following IVOA Spec-
trum Data Model v1.0, 1.1, or 1.2.

VOTable XML-format, text or binary.
FITS Series of HDUsa with text header and text or binary data extensions.
ASCII Table Text file with columns separated by spaces and/or tabs.
CSV Text file with columns separated by commas (first row may contain column names).

S
u

p
p

or
te

d

IPAC A custom bar-separated text format by IPAC.
TST Tab Separated Table (comments are ignored, metadata is in key, value pairs).

a Header Data Units.

Table 2: Supported SED units. Iris can read, write, and/or plot
data in the spectral and flux units listed in this table. Italicized units
are only available for plotting.

Spectral Axis Flux Axis

Å erg/s/cm2/Å
nm erg/s/cm2/Hz
µm photon/s/cm2/Å
mm photon/s/cm2/Hz
cm Watt/m2/µm
m Watt/cm2/µm
eV Watt/m2/nm
keV Watt/m2/Hz
MeV Rayleigh/Å
Hz Jy
kHz mJy
MHz µJy
GHz
THz AB mag
1/µm ST maga

km/s @ 21 cm
km/s @ 12 CO Jy Hz

erg/s/cm2

a ST = −2.5 log10 fλ − 21.10, where fλ is
the source flux density expressed per unit
wavelength.

and knowledge extraction.
Following VO efforts to combine data services and ap-

plications seamlessly, Iris offers an interface for building
large broadband SEDs from different sources in various
data formats, while providing robust fitting methods and
interactive visualization capabilities using existing astro-
nomical software. It is important to stress that this is
not only a matter of ingesting non-standard files, but also
to allow scientists to create standardized versions of their
datasets: the improved interoperability enables more tools,
inside or outside Iris, to load and interpret such datasets
with minimal user intervention.

Much effort has been put into making Iris lenient on

data format. While natively supporting VO-compliant
files (properly annotated VOTable and FITS files), Iris
can ingest ASCII, CSV, and other table-like formats as
well with some extra user input. Table 1 describes the
file formats that can be read into Iris. Users may also
seamlessly transfer data from other VO applications or
data archive services through SAMP, the Simple Applica-
tion Messaging Protocol (Taylor et al., 2011). Moreover,
Iris can read, write, and display SED data in a variety
of commonly-used units, which are listed in Table 2, with
minimal user effort.

But more importantly, Iris provides standardized views
of the integrated datasets to its clients, whether they are
built-in components, third party plug-ins, or external ap-
plications.

2.1. A Use Case

In this section, we present a brief, illustrative use-case
of Iris to showcase its main features. We outline the anal-
ysis of the broadband SED of flat spectrum radio quasar
(FSRQ) object PKS 1127-14 (see B lażejowski et al., 2004),
and save the results to file.

For details on the Iris features introduced in this use-
case, see Section 6.

An Iris session begins with populating a SED by click-
ing on the SED Builder icon on the Iris desktop. A user
loads a local ASCII file of PLANCK data, a WISE dataset
from TOPCAT (Taylor, 2005, ascl:1101.0106) through a
SAMP message, and all data associated with PKS 1127-
14 in NED with the NED SED Service portal. The user
also uses the built-in Italian Space Agency Science Data
Center7 (ASDC) query tool to find optical/UV data for
PKS 1127-14, and adds it to the SED (see Figure 1).

Data are converted to a single set of units on the fly,
and displayed in the SED Viewer. The user can switch
the spectral and flux axes between a variety of commonly-
used SED units, e.g., one can switch from Jy vs. µm to

6ascl: Astronomy Source Code Library
7http://www.asdc.asi.it/

3

http://www.asdc.asi.it/

Figure 1: Building the SED of blazar PKS 1127-14 in Iris. Top-left: Data from the NED SED Service, a local file, and from TOPCAT
are managed in the SED Builder. Bottom-left: The various data segments plotted in νF (ν) units inside the SED Viewer. Squares show
data with flux uncertainties, whereas the pink diamonds denote points without associated uncertainties. Each segment in the SED Builder
is plotted in a different color. Black squares are data taken from NED; the pink squares in the radio are the data from PLANCK; and the
red, yellow, blue, and green squares in the near-IR are the four WISE bands. Right: An ASDC Data Query form for PKS 1127-14. The user
searches for data between specified dates and available instruments (Swift and GALEX in this case). The data have been added to the open
SED PKS 1127-14.

Figure 2: Fitting Visualization. Visualization of a linear combination of log-parabolas and blackbody distributions for FRSQ blazar PKS
1127-145, fit with Nelder-Mead optimization and least-square statistics. Left: The best fit linear combination overlaid on the SED data as
a red curve. The blue line shows the spectral range over which the data were fit. Below the main plot are residuals of the fitted curve, in
dex units. Top-right: The fitting options and results. Here, the user chooses between Nelder-Mead, Levenberg-Marquardt, and Monte-Carlo
(Differential Evolution, Storn and Price, 1997) optimization and various least square and χ2 statistics. The fit statistics are reported here
after the fit has been performed. Bottom-right: The Fitting Tool window. The model components used in the fit and their fitted parameter
values are listed in the Components field. Below that is the Model Expression, in which the components are linearly combined. Note that
components are referenced by the c# suffix of the component name.

4

JyHz vs. Hz. The Metadata Browser — an interactive
table of the SED data — allows the user to interactively
inspect and filter out data points by hand or with Boolean
expressions.

The user also employs the Science Tools, an Iris built-in
component that lets the user cosmologically redshift SEDs,
interpolate SED data, and calculate integrated fluxes of
SEDs through photometric filters or user-defined pass-
bands. In particular, the user shifts PKS 1127-14 from
its observed redshift at z = 1.18 to rest frame using the
Redshift tool before fitting the SED.

The user then filters out all the points devoid of errors
using the metadata browser filtering features.

When the user is done building and editing the SED,
the user begins the fitting session. With the fitting tool,
the user can build a model expression as an arbitrary com-
bination of model components. Choosing from a list of
built-in astrophysical and mathematical models, the user
fits PKS 1127-14 with a linear combination of four mod-
els: two logarithmic parabolas to model the radio syn-
chrotron and inverse Compton radiation (Massaro et al.,
2006, Tramacere et al., 2009), and two blackbodies to ap-
proximate the models for the hot dust component and ac-
cretion disk of the blazar (Dermer and Schlickeiser, 2002).
The fit is performed using Nelder-Mead optimization and
least square statistics. The user has fine control over the
parameters, including setting initial values, the range of
the values, freezing and thawing parameters, and linking
model parameters to other parameters in the model ex-
pression; the user also controls the spectral ranges over
which to fit the models. Finally, confidence intervals are
computed for the overall model parameters.

Figure 2 shows the final model for PKS 1127-14 over-
laid on the input data and, in the lower panel, the fit
residuals.

When the user is satisfied with the fitting results, the
user saves an XML-style file of the model that can be re-
read into Iris and fit to other SED data. The user also saves
the fit results to a text file, that shows the parameters of
the fit and the details about each model component, with
the best-fit parameter values.

3. User Models and Templates

Keeping with our requirements of developing an exten-
sible SED analysis tool, we provide a user interface for
adding custom models, templates, and template libraries
for the fitting engine to use in a Custom Fit Models Man-
ager.

Sherpa, Iris’ fitting engine, provides command line
functions for users to add their own models and templates
to a Sherpa session. We wrap a graphical user interface
(GUI) around such functions for streamlined integration
and user-friendliness. The user provides the full path to
the directory where the models and templates exist, as well
as information about the parameters. Installing a model

saves a copy of the model files in the user’s home direc-
tory (in ˜/.vao/iris/components), allowing the user to
apply the models in future sessions.

3.1. Custom Python Functions

Iris accepts custom models as Python functions stored
on the user’s disk. Any number of functions can be stored
in a single file. The function implementing the model must
take two parameters: the first is an iterable of the model
parameters, the second is a placeholder for the spectral
axis, x, in units of Angstroms. For example, a model file
for a modified black body Bν(T) (ν/ν0)

β
could be defined

as in Listing 1.
User models can be arbitrarily combined with other

custom or preset model functions when using the Iris fit-
ting tool.

import numpy as np

def modified_blackbody(p, x):
""" Modified blackbody.

Parameters

p : [lambda_0, A, T, beta]

p[0] ’lambda_0’ : reference wavelength
p[1] ’A’ : amplitude of model at lambda_0
p[2] ’T’ : temperature of blackbody
p[3] ’beta’ : dust emissivity index

x : array spectral values, in Angstroms
"""

Blackbody function
efactor = 1.438786e8 / p[2]
numerator = p[1] * np.power(p[0], 5.0) * \

(np.exp(efactor / p[0]) - 1.0)
denominator = np.power(x, 5.0) * \

(np.exp(efactor/ x) - 1.0)
B_lambda = numerator / denominator

speed of light in AA/s
c = 2.998e18

powerlaw = (c / (x/p[0]))**p[3]

return B_lambda * powerlaw

Listing 1: Example of a user-defined model that can be dynamically
loaded into Iris. The code, written as a Python function, implements
a modified blackbody and can be combined in Iris with other built-in
and custom components. Backslashes indicate line continuations.

3.2. Table Models

A table model is a single template, having just the x
and y coordinates. Iris accepts two column ASCII files
as table models, following the convention where the first
column is the spectral values and the second contains the
fluxes. The spectral and flux units must be in Angstroms
and photons/s/cm2/Å, respectively8. The fit returns the

8 While Iris ingests many other units (see Table 2), the Cus-
tom Fit Model Manager is independent of Iris’s units handler and
only accepts files with spectral values in Angstroms and the flux in
photons/s/cm2/Å

5

normalization constant (or amplitude) of the model.

3.3. Template Libraries

The template model is essentially a list of table mod-
els with parameters other than the amplitude. Like
the load template model function in Sherpa, the user
must create an index file that lists the parameter values
of the templates and the full path to the template those
parameter values describe (see Listing 2 for an example).
Sherpa uses a grid-search method to find the best-fit tem-
plate. The parameters grid is created using the values
provided in the index file.

INDEX REFER MODELFLAG FILENAME
0.0 5000 1 /data/sed_temp_index-0.00.dat
-0.10 5000 1 /data/sed_temp_index-0.10.dat
-0.25 5000 1 /data/sed_temp_index-0.25.dat
-0.35 5000 1 /data/sed_temp_index-0.35.dat
-0.50 5000 1 /data/sed_temp_index-0.50.dat

Listing 2: Example of template library definition file. Template
library definition files are in ASCII format.

4. The Iris Stack

The Iris stack (Figure 3) shows how one can put
the technical IVOA specifications to work for scientists
through higher and higher layers of abstraction: the de-
tails of the Virtual Observatory standards and protocols
lie in the lowest layer, the internals of the Iris building
blocks lie in the middle layer, while the top layer expresses
high-level user-oriented features.

A reader without any knowledge of programming, let
alone of the VO specifications, should understand the la-
bels used in the top layer of the diagram and their com-
ponents (e.g., Fitting Tool and Redshifting), as long as
they have some knowledge of astronomical SEDs. On the
other hand, a developer would find words like framework,
service, and manager quite familiar, while it takes a VO-
savvy person to decode the acronyms at the bottom of the
diagram.9

This architecture enables different entry points for the
different audiences of the application. Core developers
work at all levels of the stack, but need to lay out the
foundations on top of the standard specifications; third
party developers use the middle-level abstractions offered
by the Iris framework, while end users can limit their in-
teraction to familiar astronomical concepts through the

9SAMP, the Simple Application Messaging protocol was already
introduced, DM stands for Data Model and the SpectrumDM is in-
troduced later in the paper. UTYPEs are labels used in some file
formats (like VOTable, introduced later) to tag data elements ac-
cording to a Data Model. SSAP stands for Simple Spectral Access
Protocol and is implemented by services that provide access to spec-
tral datasets, including SEDs, and is also introduced later in the
document.

SED Builder, Fitting Tool, Redshifting,
Interpolation, Integration, NED Client

IVOA Standards and Protocols:	

SAMP, SpectrumDM, UTYPEs, VOTable, SSAP	

NED SED
Service	

Iris Common Framework:	

SED Manager, Events, SEDLib	

!
Plug-ins	

Custom
Services	

C
us

to
m

Sp

ec
s	

Figure 3: The Iris Stack. With its architecture Iris allows devel-
opers to create components using higher and higher abstractions on
top of web services, desktop applications, and Virtual Observatory
standards and protocols. The technical specifications lie on the bot-
tom, a middle layer provides abstractions useful to developers, and
the user is only exposed to the science features represented by the
top layer. Users can also plug their code in as Python functions. The
result is aimed to be both user- and developer- friendly. Notice that
custom services can be built on top of custom specifications, but also
on top of IVOA standards. Similarly, plug-ins can use custom ser-
vices, but they also probably use the Iris Common Framework. The
top layer components (built-in Iris features and plug-ins) provide the
user with scientific features within Iris.

application’s user interface. End users can also plug in
their modeling code and upload templates libraries to Iris.

The color code in Figure 3 adds a different dimension
to this diagram and taps into a different characteristic of
the Iris architecture: extensibility. In particular, scarlet
letters denote extensible components of the architecture,
i.e., components that offer hooks into the Iris architecture
to users and developers. The orange boxes, on the other
hand, express components that were not part of the Iris
design, but that can be used in Iris as plug-ins, possibly
providing interfaces to access non-standard services. Some
of these plug-ins, along with a description of the design of
the Iris Software Development Kit, will be introduced in
Section 7.

The dark green box denotes IVOA sanctioned stan-
dards. Blue denotes components that are built-in in Iris
and light green boxes denote components that were devel-
oped in or for Iris.10

This architecture was also driven by a more abstract
requirement: our team was distributed, with developers
and managers working from different institutions with dif-
ferent tools and practices (Evans et al., 2012). Moreover,
wanting to reuse existing software instead of reinventing
the proverbial wheel, we had to integrate different exist-
ing software components in a seamless way. So, the Iris
stack provided not only a clean and robust architecture
for users and third party developers, but was also useful
in enabling a distributed team of part-time developers to

10While the NED SED service was developed independently of Iris,
its IVOA-compliant interface was part of the Iris project, along with
the development of a dedicated client in Iris itself.

6

work in parallel, reducing the overall project risk.
In summary, the Iris framework was designed to ad-

dress several different requirements: (i) functional require-
ments gathered by the Iris team’s lead scientists; (ii) func-
tional requirements unknown at development-time; (iii)
the distributed nature of the Iris development team; and
(iv) interoperability between several existing tools and ser-
vices.

The Iris stack offers a non-technical view of the Iris
architecture and design. While the stack shows effectively
how we tried to abstract end users and developers from
the VO specifications and from the specifics of the Iris
internals, the stack does not express the technical solutions
that we employed to achieve such extensible architecture
and to meet the aforementioned requirements. More detail
is provided in some of the following sections.

5. The Iris Architecture

In order to minimize the risk derived from the require-
ments listed in the previous section, we backed Iris with
a loosely coupled architecture through a design pattern
called Inversion of Control (Johnson and Foote, 1988).

But it was not just a matter of risk management. In-
version of Control supports the implementation of liquid
requirements, i.e., a finite set of predetermined require-
ments plus an indefinite set of custom requirements to be
implemented by users, at least in some simple cases or, for
more advanced features, by third party developers.

The architecture that supports the implementation of
such requirements has different components that can be
mapped to the Model-View-Controller (MVC) design pat-
tern.

SEDLib This basic I/O library provides classes for the
Model components of MVC. Unsurprisingly, SEDLib
does so by implementing a Data Model specification
defined by the IVOA. The Data Model defines both
the logical breakdown of spectral datasets, and the
serialization in some standard file formats. So, on
the one hand, SEDLib can perform the basic read-
/write operations on spectrophotometric files, while
on the other the library provides the data structures
that client components can use and exchange.

SEDManager The MVC Controller role is played in Iris
by the SEDManager, which itself is defined as an
Interface. The manager works as a data storage for
SEDLib instances that the different Iris components
can share.

Components The actual Iris functionality is implement-
ed by the Iris Components. They can be seen as
the Views in the MVC pattern (or, more generally,
they can provide any number of Views), since they
present the data stored in the Controller to the user,
query the Controller itself, and act upon the Models,
i.e., the SED objects provided by SEDLib.

Events Views can be notified of changes in the Models by
Events, if they implement the relative Listener inter-
face and have been registered to the Events Queue.
Events usually have a payload with more informa-
tion about their content, and a pointer to the Model
instances involved.

In summary, Components (Views) can be completely
disentangled from each other and interact indirectly
through the sole common interface represented by the
SEDManager (Controller), which in turn stores the SED
objects (Model). Dynamic changes in the system are noti-
fied to all interested agents (Listeners) via specific Events.

Components are thus agents that cooperate by attach-
ing themselves to a common bus where the SEDManager
provides the memory, and Events guarantee the flow of
information (see Figure 4).

5.1. Inversion of Control

We achieve loose coupling by an extensive use of Java
Interfaces: components, events, and event listeners, for ex-
ample, are all defined by interfaces whose implementation
can, to some extent, be freely interchangeable.

Moreover, Inversion of Control is employed to decouple
the implementation of components from the run time con-
text (see Figure 5). Methods in the Interface are callbacks,
and some of these callbacks get Interface-typed arguments
that provide them context instances during application ex-
ecution. For this reason, this pattern is also sometimes
referred to as Dependency Injection11.

Consider, for example, Iris Components: they are the
main providers of Iris functionality, and they can corre-
spond to buttons and menu items on the Iris desktop,
loggers, data handlers, etc. They must implement the
IrisComponent interface, listed in Listing 3.

package cfa.vo.iris;

import java.util.List;
import org.astrogrid.samp.client.MessageHandler;

public interface IrisComponent {

/**
* This method is invoked to initialize the

* component. If the component has to

* launch windows, frames or background

* services, this is the right method to do

* so. Otherwise the component will be

* called only if a callback is invoked.

* @param app A reference to the running \
application

* @param workspace A reference to the \
application’s workspace

*/
void init(IrisApplication app, IWorkspace \
workspace);

11There is, to be precise, a subtle but significant difference between
Dependency Injection and Inversion of Control, the first effectively
being a special case of the second.

7

API	
API	

Listener	
Listener	

API	

SED Manager	

Listener	

Notification Bus - Events	

Builder	
 Component	

Pl
ug

-in
 M

an
ag

er
	

Plug-in

Plug-in

Viewer	

Figure 4: The Iris loosely coupled, extensible architecture. Information freely flows among built-in and third-party components
provided as plug-ins. A SED Manager gives components access to the state of the SEDs in the user’s workspace, while dynamic changes in
such state are announced through events that are notified to the subscribed listeners. A plug-in manager allows users to install and uninstall
plug-ins on the fly.

Builder	

Component	

Iris

Plug-in

Iris Common SDK
<<interface>>	

EventListener	

implements

Event	
 *

fires

implements

Builder Viewer
calls

Component	

Iris

Plug-in
?

subscri
bes to

	

subscribes to	

Tightly Coupled	

Components	

Inversion	

of Control	

Viewer	

Figure 5: Inversion of Control. IoC is a design pattern that promotes decoupling of software components so that they can easily be
replaced by different implementations, with the actual binding often happening at run-time according to some configuration. This pattern,
however, also allows new components to be added at any time during the application lifecycle: a common framework (Iris Common) can be
shared as a middle layer among implementations, and a container (the Iris application) can bind components together on the fly. Components
can subscribe to events and react to them.

8

/**
* Return the name of this component. This

* name might be listed in a widget along

* with the other registered components.

* @return The component’s name as a String.

*/
String getName();

/**
* Get the description for this component. The

* description might be listed in a widget

* along with the other registered components.

* @return The component’s description as a

* String.

*/
String getDescription();

/**
* Get a command line interface object for

* this component.

* @return A CLI object

*/
ICommandLineInterface getCli();

/**
* Initialize the Command Line Application

* interface

* @param app Reference to the enclosing

* application

*/
void initCli(IrisApplication app);

/**
* The component can contribute menu items

* and desktop buttons to the enclosing GUI

* applications by providing a list of

* MenuItems.

* @return A list of the menu items this

* component will contribute to the

* application.

*/
List<IMenuItem> getMenus();

/**
* The component can register any number of

* SAMP message listeners by providing a

* list of them.

* @return A list of the SAMP message

* listeners that have to be registered to

* the SAMP hub.

*/
List<MessageHandler> getSampHandlers();

/**
* Callback invoked when the component is

* shutdown

*/
void shutdown();

}

Listing 3: This snippet of Java code represents the main interface
that all components in Iris have to implement, and how dependencies
get injected into the components at run-time. Backslashes indicate
line continuations.

At startup the Iris application reads the list of Compo-
nents to be initiated, and calls their init call-back, which
in turn is passed useful information like a reference to the
SEDManager, or hooks to the application environment.

The advantages of this architecture are both functional
and non functional. The architecture helped our heteroge-
neous development team to work in a loosely coupled way,
reducing the overall project risk, and also provided the ex-
tensible framework we were seeking in the first place. As a
matter of fact, plug-ins that can be loaded at run time im-
plement the same interfaces that the built-in components
do, and they are instantiated in exactly the same way.
The only difference is in the timing: built-in Components
get instantiated when the application itself is initialized,
while plug-ins can be instantiated and discarded at any
time during the application execution.

6. Iris Built-in Components

In the previous section, we discussed the architecture
of Iris and how the different Components in Iris communi-
cate. Each Component performs one or more SED-related
tasks in Iris, like building SEDs from multiple sources and
fine-tuned SED modeling. Here, we discuss what the Com-
ponents do in terms of the science domain, including de-
scriptions of the autonomous software used to build Iris:
Specview, Sherpa, and the NED SED Service.

6.1. SED Builder

Users manage SEDs through the SED Builder (Fig-
ure 6). From the Builder, users can add, edit, remove,
and save SEDs. Users can also transfer data seamlessly to
other VO-enabled applications through SAMP messages
from the Builder. Any number of SEDs can be analyzed
in an Iris session. Each SED has a unique identifier that
is set by default when a new SED is created, but can be
changed by the user. The user switches between SEDs
by clicking on a SED name in the Open SEDs field; the
visualizer will automatically update to the selected SED.

SEDs are built and managed in Segments, which are
groups of (spectral, flux) coordinates. For example, a spec-
trum is considered a Segment; the results of a NED SED
Service query are also handled as a Segment. In general,
anything from a single photometric point to an entire SED
can be considered a Segment, with all the points sharing
some if not all of the metadata.

Clicking on a SED in the Open SEDs field will show
all the Segments that populate that particular SED. SED
Builder shows where the Segment data came from, the
recorded RA and Dec of the Segment, and the number
of points in the Segment. Segments can be handled sep-
arately from other Segments in the SED; users can add,
edit, remove, and save a subset of Segments selected from
a SED.

6.1.1. Importing data

As described in Section 2, Iris accepts data from a vari-
ety of sources, and is lenient on the data format. Figure 7
illustrates that Iris imports data from built-in data archive

9

Figure 6: SED Builder. An example view of the SED Builder. On the left side of the window is a list of SEDs open for analysis; in this
case, FilterSed is selected. The Segments or components that constitute FilterSed are shown in the Segments section. Segments may be
managed separately. Highlighted SEDs or Segments may be edited, removed, saved, or broadcast to an external SAMP-enabled application.
New Segments and SEDs are added to the Iris session through the SED Builder.

Iris	

File	

URL	

SAMP-enabled
Application	

NED SED Service	

ASDC Data Center	

!

Figure 7: Available Data Sources. Users may import data from
the built-in clients to the NED SED Service and the ASDC. Data
may also be uploaded from a local file, a URL, a SAMP message
from a VO-enabled tool, or through a custom file filter plug-in at
run time.

portals as well as from outside resources like local files,
URLs, other VO-enabled applications, and from plug-ins.

Iris natively supports IVOA-compliant FITS and VO-
Table formats (McDowell et al., 2012). Files in these for-
mats will automatically be added to the user’s workspace.
The Builder can convert ASCII Tables, CSV, TSV, IPAC
tables, and non IVOA-compliant VOTable and FITS files
into the native format with user input. We provide two
importing forms: (i) the SED importer, which handles

spectrum-style files (i.e., those with columns for the spec-
tral coordinate, flux/energy, and flux/energy uncertain-
ties), and (ii) the Photometry Catalog Importer, which
handles photometry catalogs (i.e., files where each column
represents a passband and the cell values represent the
corresponding fluxes, with an arbitrary number of rows).
Users can save their setup options from the Import Setup
Frame to a configuration file and automatically read-in
files of the same format to Iris via the command line.

The SED Builder also has a hook for adding custom file
filters. One could develop a custom file reader that would
convert a non-standard file to an IVOA-compliant format.
This kind of add-on would allow Iris to read non-standard
files into Iris without requiring the use of the importer
tools.

6.1.2. Saving data

Users can save entire SEDs or sets of Segments to
IVOA-compliant VOTable or FITS files. In order to save
all the metadata, the IVOA-compliant serializations rely
on some specific constructs in the supported file formats,
so that SEDs that have many different Segments can be-
come very complicated to read for VO-unaware applica-
tions, although they retain all the metadata details. For
instance, segments might have data expressed in different
units inside the same SED.

To facilitate the ingestion of SEDs in VO-unaware ap-
plications and user scripts, we provide a simpler output
format that only saves the minimum amount of meaning-
ful information: the spectral coordinate, the flux or energy,
and its uncertainties. As a result, the resulting SED file
has only one Segment, with all the data expressed in a
single set of units defined by the user.

10

Whether the output includes all of the metadata or has
a simplified single table format, the result is a compliant
file that can be read back into Iris without any additional
user’s input.

This allows users to save a standardized version of the
file that can be easily shared by Iris and by the user’s
scripts.

6.2. NED SED Service

Iris is packaged with a portal to the NED SED Service
that, given a target name, retrieves all photometric data
in NED associated with the source with that target name,
and adds it to an existing SED.

In the context of the VAO development of Iris, we
adapted the NED long standing photometry and spectral
energy distribution service to conform as closely as prac-
tical to the relevant IVOA recommendations in order to
deliver photometric data from the collection into Iris seam-
lessly. The objective for NED was to provide a working
reference service for the development of Iris as well as to
serve as a working prototype for new data protocols for
spectrophotometric data being developed by the IVOA.

The NED SED Service returns data and information
from the NED photometry collection (Mazzarella and
NED Team, 2007). The NED SED Service provides three
types of queries:

Information Discovery List objects with available pho-
tometry (SED) given a sky position (RA and Dec)
and angular size. Also called a data discovery query.

Information Availability For a given named object, re-
turn the number of photometric data points.

Data Retrieval For a given named object, return the
available photometric data in an IVOA Spectrum
Data Model compatible VOTable.

All three query types use HTTP requests and responses
which conform to the IVOA Simple Spectral Access Proto-
col Version 1.04 (SSAP; Tody et al., 2012); the responses
are in VOTable format. The NED SED Service client in
Iris employs the Data Retrieval query interface, and stores
the response as a Segment. Photometric points with spec-
tral line-based values and upper- and lower-limit values
are excluded from the response.

Implementing a standard protocol interface, the NED
SED service is also available through generic VO applica-
tions like TOPCAT and the VAO Data Discovery Tool12.

6.3. SED Viewer

The Iris Viewer component is responsible for creating,
managing, and providing user interactive feedback to spec-
tral plots in Iris.

12http://vao.stsci.edu/portal/Mashup/Clients/
Portal/DataDiscovery.html

The Viewer also provides most of the low-level GUI
components used by the Fitting Tool component. The
reason for this is that most, if not all of the GUI code used
by both the Viewer and the Fitting Tool, were developed
on top of the Specview (Busko, 2002, ascl:1210.016) code
base.

Specview was developed in the late 1990’s, initially as
an experiment to evaluate Java graphics capabilities in the
context of interactive spectral plotting. Over the years
Specview grew from a simple visualizer dedicated mostly
to plot spectral data from Hubble Space Telescope (HST)
instruments, to a more capable tool with not only sophis-
ticated visualization, but also data analysis capabilities.
The ability to ingest spectral data from a variety of sources
was also gradually incorporated into the tool, culminating
with a Virtual Observatory interface capable of accessing
services that comply with the SSAP standard.

Specview however kept the emphasis on spectral data,
which is very different from the broad-band SED concept
to which Iris is dedicated. Being initially conceived as a
tool to support HST data, the design, and subsequent code
implementation, were driven by the needs and require-
ments imposed by high-dispersion, relatively narrow-band
spectra in the near-IR / optical / near-UV range. Thus
some re-work was necessary to make Specview’s internal
data structures and algorithms comply with the data types
associated with SEDs. Even so, a significant part of the
code could be kept as is, thus realizing the savings asso-
ciated with code re-use. This is particularly true in the
case of the low-level graphics engine (Busko, 2000). Most
of the work in adapting Specview’s code base to Iris hap-
pened on two fronts: (i) adding code that implements the
Iris Component interface, and (ii) augmenting the capa-
bilities of the Data Browser to allow interactive access to
SED metadata. Some work was also done in fine-tuning
plotting capabilities to the particular needs of SED data.

The initial view the Viewer creates of a just-ingested
SED is via a scatter plot depicting wavelengths (frequency
and energy units are also supported) and flux density (or
flux) for each data point that comprises the SED. The
plot can be configured in a variety of ways, by changing
the scaling and units. The data initially plotted can then
be further examined in more detail, using tabular and tree
depictions. In particular, the metadata associated with
each data point, as well as the global metadata associ-
ated with the entire SED, can be examined in detail using
the Metadata Browser. Data points can be selectively re-
moved from the SED using filters sensitive to both data
and metadata values. These filters are built by a user-
defined Boolean expression that can be created and inter-
acted with in the GUI itself. The expression uses Python-
like syntax, and Python operators are available through-
out. That way, SEDs can be modified after being read by
the SED Builder, and before being further processed or
measured.

11

http://vao.stsci.edu/portal/Mashup/Clients/Portal/DataDiscovery.html
http://vao.stsci.edu/portal/Mashup/Clients/Portal/DataDiscovery.html

6.4. Sherpa: Model Fitting

Sherpa (ascl:1107.005) is the Chandra Interactive
Analysis of Observations (CIAO; Fruscione et al., 2006,
ascl:1311.006) modeling and fitting application. Sherpa
enables the user to construct complex models from simple
definitions and fit those models to 1D (spectra) and 2D
(images) data using a variety of statistics and optimiza-
tion methods.

Written in Python, with C/C++/Fortran extensions,
Sherpa was a robust choice for providing Iris with a curve
fitting engine.

However, since the Iris front end was going to be a Java
application13, an interoperability layer had to be designed
to interface the graphical user interface and Sherpa as a
fitting engine back-end.

SAMP is used as the interface protocol. This decision
makes the design of the interface very simple, so that the
interoperability layer on top of Sherpa is rather thin and
consists only of the code required to inspect the incoming
SAMP messages and build a call to Sherpa.

The design of this interface is represented schematically
in Figure 8.

When Iris is launched the sherpa-samp process is
also started in the background. This process starts a
SAMP client that waits for a SAMP hub to attach to,
registering to a number of custom mtypes. The mtypes
work as remote procedure identifiers, and SAMP messages
provide the remote methods with data that need to be
processed. Sherpa is used to compute a response that is
packaged as a SAMP response to be shown to the user.

The thin layer between Java and Python code is imple-
mented using two existing implementations of the SAMP
protocol, namely jsamp14 for Java and SAMPy15 for
Python.

The sherpa-samp layer grew to accommodate the
new science requirements in the latest Iris releases, so to
include some analysis code that is independent of Sherpa.

6.4.1. Fitting Options

We provide the following fitting optimization meth-
ods and fit statistics from Sherpa in Iris. Refsdal et al.
(2009) discuss Sherpa’s statistics in detail. Here, we briefly
present the options.

The optimization methods available in Iris are varia-
tions of the Nelder-Mead simplex, Levenberg-Marquardt,
and Monte Carlo algorithms. The Nelder-Mead simplex
method, which finds the local minimum of a function in pa-
rameter space through a direct search method, is an adap-
tation of the algorithms described in Wright (1996) and

13In the first version of Iris the front end was a modified version of
Specview itself, while in later versions we integrated different com-
ponents under a common framework graphically represented by the
Iris Desktop. Even in this configuration, the fitting front end was
provided by Specview under the hood.

14http://software.astrogrid.org/p/jsamp/1.3/
15http://pythonhosted.org//sampy/

Lagarias et al. (1998). Levenberg-Marquardt optimiza-
tion finds the local minimum of non-linear least squares
functions of the model parameters (Moré, 1978). Lastly,
the Monte Carlo method uses a differential evolution algo-
rithm outlined in Storn and Price (1997) to find the global
minimum in parameter space.

Sherpa provides several χ2 statistics with different vari-
ances. For example, users can use the variance of the y-
uncertainties (or y-values if there are no uncertainties),
or they can set the variance to 1. Also included are two
maximum likelihood functions based on Poisson statistics:
Cash and C-statistic (Cash, 1979).

6.5. Science Tools

We provide built-in science tools that perform calcu-
lations commonly used in SED analysis: redshifting, in-
terpolation, and integration. The data are setup on the
Java-side of Iris, but the actual calculations are performed
in sherpa-samp.

The open SEDs are listed in the Science Tools frame.
The user selects the SED they wish to analyze, and inputs
the required information for a calculation.

6.5.1. Redshifting

Redshifting SEDs in Iris refers to cosmological redshift.
The spectral values are transformed into wavelength-space
before shifting the SED. Because the apparent magnitude
of a source is dimmer at high redshifts than low redshift,
we correct the flux so that the area under the shifted SED
equals that of the un-shifted SED using

fzf (λ) = fzi(λ)

∑N
k=1(fzi(λk+1) + fzi(λk))∑N
k=1(fzf (λk+1) + fzf (λk))

, (1)

where fzi is the observed flux at the initial (observed) red-
shift zi, fzf is the flux at the final (target) redshift zf , λ
is the wavelength, N is the number of points in the SED,
and λk is the wavelength of the kth point in the SED. In
sherpa-samp, we extend the astLib16 astSED class that
implements Equation 1.

From the the user’s perspective, the user supplies the
initial and final redshift of the SED and clicks “Create New
SED.”

6.5.2. Interpolation

Iris provides 1D interpolation along the spectral axis.
There are three interpolation options: linear, linear spline,
and nearest neighbor. Interpolation may be carried out on
a linear or logarithmic scale. Users may choose the number
of bins, the spectral range over which to interpolate, and
may choose to smooth the resultant SED via a boxcar
method.

16http://astlib.sourceforge.net/

12

http://software.astrogrid.org/p/jsamp/1.3/
http://pythonhosted.org//sampy/
http://astlib.sourceforge.net/

Figure 8: Design of the Specview/Sherpa interoperability layer. The interface between Sherpa (fitting engine), and Specview
(graphical user interface) was designed by defining a common data model for representing the requests and responses of fitting operations:
the serialization of the request is a SAMP message, whose mtype identifies the remote operation that the client is requesting.

6.5.3. Integration

The Integration tool was developed for estimating in-
tegrated fluxes of a SED. The tool acts as a wrapper of
the astLib methods calcFlux and integrate, which
in turn use the composite trapezoidal rule to integrate the
SEDs.

Iris provides two methods of integration: (i) through a
user-defined passband, and (ii) through a photometric fil-
ter. The first option lets the user specify the spectral range
in wavelength, frequency, or energy units (Angstroms, Hz,
and keV, respectively) to integrate under. The second es-
timates the integrated flux measured through any of the
photometric filters provided by the Spanish Virtual Ob-
servatory’s (SVO’s) Filter Profile Service17 (Solano, 2013).
This service has an extensive collection of over 1000 filters
at IR, optical, and UV instruments. The user chooses from
a list of filters that can be searched by double-clicking on
an instrument name, or by searching for a string in the
browser. The user sees the minimum, maximum, and ef-
fective wavelengths of the filters before applying the filter
to the SED. Both methods return the effective wavelength
of the passband in Angstroms and the calculated flux in
Jansky. The user can export the data to a new SED or
save the results to a simple ASCII formatted file.

Notice that Iris currently integrates the SED data
points, possibly after an interpolation, and not the model.

17http://svo2.cab.inta-csic.es/theory/fps/index.php

So, if the transmission curves or passbands do not com-
pletely overlap with the SED Iris will return a NaN (Not
a Number).

7. Plug-ins: the Software Development Kit

Iris offers a Java Software Development Kit (SDK) that
can be used to extend the Iris capabilities through the use
of dynamically pluggable add-ons, or plug-ins. The use
cases for this are listed below.

New functionality A developer may want to add new
capabilities in one or more new Components. This
use case can be broken down in more detailed and
concrete extensions, described later in this section.

Custom-to-Standard adapters A developer may want
to create adapters that query a non-standard service,
or load a non-standard dataset, and then turn the
data to SEDLib objects, thus effectively standard-
izing them so that they can be used by other com-
ponents in the Iris environment, or reused by other
VO applications. In other terms, one can achieve
interoperability using the Iris infrastructure start-
ing from a non-interoperable service, file, or tool.
Iris actually has some built-in Custom-to-Standard
adapters, like the sherpa-samp layer described in
Section 6, or the ASDC plug-in interface that queries
a quasi-standard service, described in Section 7.2.2.

13

http://svo2.cab.inta-csic.es/theory/fps/index.php

This section describes Java plug-ins, while Section 3
described how users can extend the models for fitting SEDs
using Python functions.

7.1. Anatomy of a Plug-in

A single Java Archive (jar) file can contain several plug-
ins, and each plug-in can bundle several Iris Components.

Each Component can provide several additions to Iris,
as described in some detail below.

7.1.1. Menus and Buttons

Usually, although not always, an Iris Component is vis-
ible to the user as either a set of buttons on the Iris Desk-
top, or as a set of menu items in the Iris menu bar, or
both.

Menu items can be added to either the File menu or to
the Tools menu in a specific plugin-related folder.

While the implementation of such buttons and menu
items could be done from scratch by implementing some
Java Interfaces, a set of abstract classes implements a lot of
the boilerplate code and makes some convenient assump-
tions. This way buttons and menu items can be created
with very few lines of code.

Menu items and buttons can be customized by provid-
ing the button name, a description that will be rendered
as a mouse-hover tooltip, and icons.

7.1.2. Command Line

Iris offers a framework for providing simple command
line interfaces to its tools. For example, Iris ships a com-
mand line interface to the SED Builder (see Section 6) that
allows users to import non-standard files in bulk through
scripts, possibly starting from templates saved interac-
tively from the SED Builder.

The framework is extensible through a simple dispatch-
ing mechanism. Each component has a name that is used
to dispatch the command line argument to the right CLI
engine. For instance, the line

./Iris builder config.txt

instructs Iris to dispatch the config.txt argument to
the SED Builder’s CLI engine. Components bundled with
plug-ins can provide such an engine by implementing the
ICommandLineInterface Java Interface as shown in
Listing 4.

package cfa.vo.iris;

/**
* A simple interface for providing CLI access in

* an extensible, pluggable way

* @author olaurino

*/
public interface ICommandLineInterface {

/**
* The name that has to be associated with the

* implementing component.

* When the calling application parses the

* command line, it will interpret the first

* argument as the component to which the

* command has to be relayed, using this string

* as a key.

*
* @return The compact name that identifies this

* CLI

*/
String getName();

/**
* Callback that gets called when a command line

* is parsed and associated to the implementing

* component.

*
* @param args The command line arguments.

*/
void call(String[] args);

}

Listing 4: Every Iris component can expose a command line
interface. Iris dispatches the command line arguments for the relative
component to process. This code is written in Java.

7.1.3. SAMP Handlers

A possible extension that plug-ins can offer to the users
is SAMP handlers. When Iris receives a SAMP message
that matches the Handler’s mtype, the message is directly
dispatched to the Handler itself by the Iris framework. As
a matter of fact, Iris just offers a convenient shortcut to
the excellent jsamp implementation of SAMP, making it
available to the users with just the bare minimum amount
of work required. The setup of the SAMP infrastructure
through jsamp is all done by Iris, including a keep-alive
mechanism that brings a SAMP hub up when an existing
one is shut down.

A hook is provided for Components willing to send
their own SAMP messages to the SAMP Hub, again as
a convenient shortcut to jsamp.

7.1.4. Custom Events

The Iris Events Framework is itself extensible: this way
plug-in developers can, if needed, create their own nested
architecture for their plug-in’s Components.

7.1.5. SED attachments

Components can attach arbitrary objects to the SEDs
managed by the SEDManager. This way users can rely
on the Iris framework to manage the additional informa-
tion they might want to store about the individual SEDs.
When SEDs are deleted, the manager takes care of releas-
ing any references to the attachments, reducing the risk of
memory leaks.

7.2. Plug-in examples

7.2.1. ASDC — stable

The Italian Space Agency Science Data Center (ASDC)
hosts a database with tens of catalogs in a very wide range
of wavelengths, also providing time domain information.

14

A plug-in for providing Iris with a rich graphical user
interface to query their database was developed by the
ASDC in a collaboration between the ASDC and the Iris
teams. The plug-in became part of the main Iris distri-
bution in v2.0 and was a valuable test bench to review,
validate, and improve the Iris Software Development Kit.

While the ASDC data query tool is now part of the
Iris distribution, this tool provides a very good example
of how a plug-in can be integrated seamlessly in the Iris
framework to add specific value to the overall application.
Integration can be so seamless, actually, that including the
plug-in into the main Iris distribution is almost exclusively
a matter of configuration rather than of coding.

The ASDC data query tool extends the capabilities of
the SED Builder by providing a rich graphical user in-
terface that allows users to check what archives to query,
and since the ASDC query is a positional cone search, the
client provides different adjustable search radii for each
catalog that default to reasonable values consistent with
the resolving power of the individual instruments.

Moreover, the tool allows users to query for specific
observation time ranges, thus allowing basic time domain
analysis of the SEDs.

This component proves several points about the Iris
framework and SDK, as listed below.

Custom-to-Standard adapters The ASDC web ser-
vice backing up the implementation of the query tool
does not comply with any VO data access protocols
(at least not yet), as this service was designed as a
private interface to their database to be consumed by
a dedicated client like the one implemented in Iris.
The data files coming from the service, on the other
hand, are compliant with the IVOA specifications,
so they can be directly read by SEDLib and passed
to the SEDManager.

Interoperability Although not designed as part of Iris,
the ASDC plug-in integrates seamlessly with the
Iris built-in components. When the ASDC query
tool downloads data from the service, the data are
listed in the SED Builder and visualized in the SED
Viewer, even though the ASDC tool does not in-
teract directly with any of them. They all interact
only with the SED Manager and they get notified of
changes by the events that are fired when Models are
changed.

The Iris SDK As it will be explored in some detail in
Section 7.4, a plug-in developer can pretty much fo-
cus on the implementation of the components’ busi-
ness logic, without worrying too much about the
boiler plate code required to configure such compo-
nents. By using the abstract classes that the Iris
framework provides, one can leverage the existing
components with just a few lines of code and then
start adding value to the entire application.

7.2.2. Vizier — experimental

Experimental plug-ins are shipped with Iris but they
can only be activated by turning on switches on the Iris
command line. For instance, if one starts Iris with the
command ./Iris --vizier an experimental plug-in18

for the CDS Vizier photometric service gets loaded in the
usual Iris desktop.

7.2.3. R — experimental

A highly experimental proof-of-concept plug-in was de-
veloped to explore the possibility of interfacing Iris with
rich analysis environments like R. The plug-in shows how
one can beam data from Iris to R and trigger some analysis
on the dataset in R.19

7.3. Other Extensibility Points

7.3.1. Custom File Readers

Iris supports a fair number of file formats natively: VO-
Table, FITS, CSV, TSV, ASCII, and IPAC tables. How-
ever, new file filters can be created and loaded at run-time.
One can also create filters for the natively supported files.
In this case, the custom filter would parse the file and map
the metadata to the IVOA Data Model fields.

7.3.2. Persistence

Components can also get a handle to the configura-
tion directory (usually a hidden folder in the user’s home
directory) if they need to persist information like user’s
preferences, local databases, or work sessions.

7.4. How to write an Iris plug-in

Iris uses Maven Archetypes to streamline the process
of building and distributing Iris Java plug-ins.

You might also write plug-ins without using Maven,
but you would need to take care of many steps that the
Maven-generated project automatically takes care of, like
the inclusion of your dependencies in your plug-in’s jar file.

In order to have a test plug-in up and running you need
to create a new project from the Maven archetype:

$ export repo=http://vaotest2.tuc.noao.edu:8080/\
artifactory/

$ mvn archetype:generate\
-DarchetypeRepository=$repo \
-DarchetypeArtifactId=iris-plugin-archetype \
-DarchetypeGroupId=cfa.vo \
-DarchetypeVersion=1.1

18While this client should work fine most of the time, users should
not expect proper error handling, neither there is a way to change
the search radius.

19In order to make this plug-in work one needs to install R and
the Java-R interface package, and then set up some environment
variables and start Iris in a non-standard way. If interested in exper-
imenting with this plug-in, please contact the corresponding author.

15

The above command will ask you some questions about
the metadata for your plug-in project, like the group id,
the project id (called artifact-id in Maven), and the ver-
sion. At the end of the process you should have a directory
named after your project-id. This directory contains all
the files needed to build and package a test plug-in.

You can type mvn package from the newly created
directory and Maven will package the test plug-in for you
in the target directory as a jar file.

You can use the Iris Plug-in Manager component to
install this jar file into Iris. As soon as the plug-in is in-
stalled, a new button should appear on the Iris desktop.
If you click on the button, a rather impressive dialog box
with the universal salutation “Hello World!” should ap-
pear on your screen.

You can inspect the source code of this project and
notice that most of the code is made of metadata strings
and basic class definitions and instantiations. By inherit-
ing from the abstract classes that are provided with the
Iris SDK, the actual code that one needs to implement
starts from the implementation of the onClick callback
of the AbstractPluginMenuItem class. From that call
on, a plug-in developer can focus on the implementation
of their components and start using the hooks provided by
the Iris Framework in order to interoperate with the other
Iris components, and possibly with other VO applications.

One can start from this dummy project, inspect the
source code, make changes to the package and class names
and to the metadata strings, and then start implementing
their component’s business logic and user interface.

The Iris website contains further documentation on
how to write plug-ins, and you can contact the authors
of this paper for further information.

8. Future Plans

We are working on improving Iris in several ways. With
the VAO shutting down in 2014, the development of Iris
has been taken over by the Chandra X-Ray Center group
at the Smithsonian Astrophysical Observatory.

While the current Software Development Kit is focused
on letting plug-ins contribute SEDs and SED segments
to the user’s workspace, we want to improve the ways in
which plug-ins can interact with the visualization and fit-
ting code, decoupling Specview and Sherpa.

We are also exploring solutions to overcome one of the
limitations in the current code, namely the handling of
high resolution spectra, that is mostly due to a visualiza-
tion issue.

Several improvements will derive from the inclusion in
Iris of the latest Sherpa version, and in particular of the
new code for interpolating templates in template fitting.
This will allow users to combine templates with other tem-
plates and functions and compute photometric redshifts
through template fitting, for instance.

Also, we want to provide finer grained control over the
visualization and manipulation of individual components
in the model expressions.

From the user interface point of view, we are planning
to provide Python bindings to enhance the integration of
Iris in customized, complex scientific work-flows.

9. Conclusions

Iris is a Virtual Observatory application designed with
the goal of streamlining the construction of broadband
spectral energy distributions while providing flexible and
robust tools for their analysis, with a stress on interoper-
ability and extensibility.

To summarize, Iris provides: built-in capabilities for
building, viewing, and analyzing broad-band spectro-pho-
tometric SEDs; a Python framework for fitting user-pro-
vided models and templates; interoperability with Virtual
Observatory tools through the Simple Messaging Applica-
tion Protocol (SAMP).

The Iris layered architecture takes advantage of the
Virtual Observatory standards and protocols without ex-
posing their complexity to the end users, who still benefit
from the added interoperability. At the same time, devel-
opers can use a middle layer of abstraction that exposes
the domain objects, i.e., photometric SEDs, and the user’s
workspace, in a clean and consistent way through a Java
software development kit.

This way Iris combines several existing software com-
ponents with new dedicated software, and provides hooks
for astronomers and software developers that want to
leverage the general interoperable framework while plug-
ging in their own code.

Iris is available as an Open Source project, and can be
downloaded as a binary or source distribution for Linux
and OS X.

Acknowledgments

The Authors would like to acknowledge Giuseppina
Fabbiano, Ian Evans, Jonathan McDowell, and Aneta
Siemiginowska for their support and feedback in all the
phases of the work. Dan Nguyen and Joseph Miller (SAO)
supported the development team in the very early stages
of the work.

We also thank the Italian Space Agency Science Data
Center for the contribution of the ASDC Data plug-in,
in particular Paolo Giommi, Roberto Primavera, Milvia
Capalbi, and Bruce Gendre.

Support for the development of Iris was provided by the
Virtual Astronomical Observatory contract AST0834235.
Support for Sherpa is provided by the National Aeronau-
tics and Space Administration through the Chandra X-ray
Center, which is operated by the Smithsonian Astrophys-
ical Observatory for and on behalf of the National Aero-
nautics and Space Administration contract NAS8-03060.

16

Support for Specview is provided by the Space Telescope
Science Institute, operated by the Association of Universi-
ties for Research in Astronomy, Inc., under National Aero-
nautics and Space Administration contract NAS5-26555.
This research has made use of the NASA/IPAC Extra-
galactic Database (NED) which is operated by the Jet
Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

References

Acquaviva, V., Gawiser, E., Guaita, L., 2011. Spectral Energy Dis-
tribution Fitting with Markov Chain Monte Carlo: Methodology
and Application to z = 3.1 Lyα-emitting Galaxies. ApJ 737, 47.
doi:10.1088/0004-637X/737/2/47.

Arnouts, S., Cristiani, S., Moscardini, L., Matarrese, S., Lucchin,
F., Fontana, A., Giallongo, E., 1999. Measuring and mod-
elling the redshift evolution of clustering: the Hubble Deep Field
North. MNRAS 310, 540–556. doi:10.1046/j.1365-8711.
1999.02978.x.

Bayo, A., Rodrigo, C., Barrado Y Navascués, D., Solano, E.,
Gutiérrez, R., Morales-Calderón, M., Allard, F., 2008. VOSA:
virtual observatory SED analyzer. An application to the Collinder
69 open cluster. A&A 492, 277–287. doi:10.1051/0004-6361:
200810395.

Beńıtez, N., 2000. Bayesian Photometric Redshift Estimation. ApJ
536, 571–583. doi:10.1086/308947.

Berriman, G.B., Hanisch, R.J., Lazio, T.J.W., Szalay, A., Fab-
biano, G., 2012. The organization and management of the Virtual
Astronomical Observatory, in: Modeling, Systems Engineering,
and Project Management for Astronomy V. doi:10.1117/12.
926605.

B lażejowski, M., Siemiginowska, A., Sikora, M., Moderski, R., Bech-
told, J., 2004. X-Ray Emission from the Quasar PKS 1127-145:
Comptonized Infrared Photons on Parsec Scales. ApJLett 600,
L27–L30. doi:10.1086/381497.

Bolzonella, M., Miralles, J.M., Pelló, R., 2000. Photometric redshifts
based on standard SED fitting procedures. A&A 363, 476–492.
arXiv:astro-ph/0003380.

Budavári, T., Wild, V., Szalay, A.S., Dobos, L., Yip, C.W., 2009.
Reliable eigenspectra for new generation surveys. MNRAS 394,
1496–1502. doi:10.1111/j.1365-2966.2009.14415.x.

Busko, I., 2000. SPECVIEW: An Interactive Java Tool for Visu-
alization and Analysis of Spectral Data, in: Astronomical Data
Analysis Software and Systems IX, p. 79.

Busko, I., 2002. Specview: a Java Tool for Spectral Visualization
and Model Fitting, in: Astronomical Data Analysis Software and
Systems XI, p. 120.

Cash, W., 1979. Parameter estimation in astronomy through appli-
cation of the likelihood ratio. ApJ 228, 939–947. doi:10.1086/
156922.

Chen, C.H., Jura, M., Gordon, K.D., Blaylock, M., 2005. A Spitzer
Study of Dusty Disks in the Scorpius-Centaurus OB Association.
ApJ 623, 493–501. doi:10.1086/428607.

Chiang, E.I., Goldreich, P., 1997. Spectral Energy Distributions of T
Tauri Stars with Passive Circumstellar Disks. ApJ 490, 368–376.
arXiv:astro-ph/9706042.

Cid Fernandes, R., Gu, Q., Melnick, J., Terlevich, E., Terlevich,
R., Kunth, D., Rodrigues Lacerda, R., Joguet, B., 2004. The
star formation history of Seyfert 2 nuclei. MNRAS 355, 273–296.
doi:10.1111/j.1365-2966.2004.08321.x.

Conroy, C., 2013. Modeling the Panchromatic Spectral Energy
Distributions of Galaxies. ARA&A 51, 393–455. doi:10.1146/
annurev-astro-082812-141017.

Czerny, B., Elvis, M., 1987. Constraints on quasar accretion disks
from the optical/ultraviolet/soft X-ray big bump. ApJ 321, 305–
320. doi:10.1086/165630.

Dermer, C.D., Schlickeiser, R., 2002. Transformation Properties
of External Radiation Fields, Energy-Loss Rates and Scattered
Spectra, and a Model for Blazar Variability. ApJ 575, 667–686.
doi:10.1086/341431.

Doe, S., et al., 2012. Iris: The VAO SED Application, in: As-
tronomical Data Analysis Software and Systems XXI, p. 893.
arXiv:1205.2419.

Evans, J.D., et al., 2012. Managing distributed software development
in the Virtual Astronomical Observatory, in: Modeling, Systems
Engineering, and Project Management for Astronomy V. doi:10.
1117/12.927371.

Freeman, P., Doe, S., Siemiginowska, A., 2001. Sherpa: a mission-
independent data analysis application, in: Astronomical Data
Analysis, pp. 76–87. doi:10.1117/12.447161.

Fruscione, A., et al., 2006. CIAO: Chandra’s data analysis system,
in: Observatory Operations: Strategies, Processes, and Systems.
doi:10.1117/12.671760.

Ilbert, O., et al., 2006. Accurate photometric redshifts for the CFHT
legacy survey calibrated using the VIMOS VLT deep survey. A&A
457, 841–856. doi:10.1051/0004-6361:20065138.

Johnson, R.E., Foote, B., 1988. Designing Reusable Classes. Jour-
nal of Object-Oriented Programming 1, 22–35. http://www.
laputan.org/drc.html.

Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., 1998. Con-
vergence Properties of the Nelder–Mead Simplex Method in Low
Dimensions. SIAM J. on Optimization 9, 112–147. doi:10.1137/
S1052623496303470.

Lagrange, A.M., Backman, D.E., Artymowicz, P., 2000. Planetary
Material around Main-Sequence Stars. Protostars and Planets IV
, 639.

Laurino, O., Busko, I., Cresitello-Dittmar, M., D’Abrusco, R., Doe,
S., Evans, J., Pevunova, O., Norris, P., 2013. Constructing and
Analyzing Spectral Energy Distributions with the Virtual Obser-
vatory, in: American Astronomical Society Meeting Abstracts, p.
240.38.

Massaro, E., Tramacere, A., Perri, M., Giommi, P., Tosti, G., 2006.
Log-parabolic spectra and particle acceleration in blazars. III. SSC
emission in the TeV band from Mkn501. A&A 448, 861–871.
doi:10.1051/0004-6361:20053644.

Mazzarella, J.M., NED Team, 2007. NED for a New Era, in: Astro-
nomical Data Analysis Software and Systems XVI, p. 153.

McDowell, J., et al., 2012. IVOA Recommendation: Spectrum Data
Model 1.1. ArXiv e-prints arXiv:1204.3055.

Moré, J.J., 1978. The levenberg-marquardt algorithm: Implemen-
tation and theory, in: Watson, G. (Ed.), Numerical Analysis.
Springer Berlin Heidelberg. volume 630 of Lecture Notes in Math-
ematics, pp. 105–116. doi:10.1007/BFb0067700.

Ochsenbein, F., et al., 2011. IVOA Recommendation: VOTable For-
mat Definition Version 1.2. ArXiv e-prints arXiv:1110.0524.

Quinn, P.J., et al., 2004. The International Virtual Observatory
Alliance: recent technical developments and the road ahead, in:
Optimizing Scientific Return for Astronomy through Information
Technologies, pp. 137–145. doi:10.1117/12.551247.

Refsdal, B.L., et al., 2009. Sherpa: 1D/2D modeling and fitting in
Python, in: Proceedings of the 8th Python in Science Conference,
Pasadena, CA, 2009, edited by G. Varoquaux, S. van der Walt
and J. Millman, p. 51.

Robitaille, T.P., Whitney, B.A., Indebetouw, R., Wood, K., 2007. In-
terpreting Spectral Energy Distributions from Young Stellar Ob-
jects. II. Fitting Observed SEDs Using a Large Grid of Precom-
puted Models. ApJS 169, 328–352. doi:10.1086/512039.

Robitaille, T.P., Whitney, B.A., Indebetouw, R., Wood, K., Denz-
more, P., 2006. Interpreting Spectral Energy Distributions from
Young Stellar Objects. I. A Grid of 200,000 YSO Model SEDs.
ApJS 167, 256–285. doi:10.1086/508424.

Sawicki, M., Yee, H.K.C., 1998. Optical-Infrared Spectral Energy
Distributions of Z ¿ 2 Lyman Break Galaxies. AJ 115, 1329–1339.
doi:10.1086/300291.

Shapley, A., Fabbiano, G., Eskridge, P.B., 2001. A Multivariate
Statistical Analysis of Spiral Galaxy Luminosities. I. Data and
Results. ApJS 137, 139–199. doi:10.1086/322998.

17

http://dx.doi.org/10.1088/0004-637X/737/2/47
http://dx.doi.org/10.1046/j.1365-8711.1999.02978.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02978.x
http://dx.doi.org/10.1051/0004-6361:200810395
http://dx.doi.org/10.1051/0004-6361:200810395
http://dx.doi.org/10.1086/308947
http://dx.doi.org/10.1117/12.926605
http://dx.doi.org/10.1117/12.926605
http://dx.doi.org/10.1086/381497
http://arxiv.org/abs/astro-ph/0003380
http://dx.doi.org/10.1111/j.1365-2966.2009.14415.x
http://dx.doi.org/10.1086/156922
http://dx.doi.org/10.1086/156922
http://dx.doi.org/10.1086/428607
http://arxiv.org/abs/astro-ph/9706042
http://dx.doi.org/10.1111/j.1365-2966.2004.08321.x
http://dx.doi.org/10.1146/annurev-astro-082812-141017
http://dx.doi.org/10.1146/annurev-astro-082812-141017
http://dx.doi.org/10.1086/165630
http://dx.doi.org/10.1086/341431
http://arxiv.org/abs/1205.2419
http://dx.doi.org/10.1117/12.927371
http://dx.doi.org/10.1117/12.927371
http://dx.doi.org/10.1117/12.447161
http://dx.doi.org/10.1117/12.671760
http://dx.doi.org/10.1051/0004-6361:20065138
http://www.laputan.org/drc.html
http://www.laputan.org/drc.html
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1051/0004-6361:20053644
http://arxiv.org/abs/1204.3055
http://dx.doi.org/10.1007/BFb0067700
http://arxiv.org/abs/1110.0524
http://dx.doi.org/10.1117/12.551247
http://dx.doi.org/10.1086/512039
http://dx.doi.org/10.1086/508424
http://dx.doi.org/10.1086/300291
http://dx.doi.org/10.1086/322998

Smith, J.D.T., et al., 2007. The Mid-Infrared Spectrum of Star-
forming Galaxies: Global Properties of Polycyclic Aromatic Hy-
drocarbon Emission. ApJ 656, 770–791. doi:10.1086/510549.

Solano, E., 2013. Spectral stellar libraries and the Virtual Observa-
tory. ArXiv e-prints arXiv:1312.3249.

Storn, R., Price, K., 1997. Differential evolution – a sim-
ple and efficient heuristic for global optimization over continuous
spaces. J. of Global Optimization 11, 341–359. doi:10.1023/A:
1008202821328.

Taylor, M., Boch, T., Fitzpatrick, M., Allan, A., Paioro, L., Tay-
lor, J., Tody, D., 2011. IVOA Recommendation: SAMP - Sim-
ple Application Messaging Protocol Version 1.3. ArXiv e-prints
arXiv:1110.0528.

Taylor, M.B., 2005. TOPCAT & STIL: Starlink Table/VOTable Pro-
cessing Software, in: Astronomical Data Analysis Software and
Systems XIV, p. 29.

Tody, D., et al., 2012. IVOA Recommendation: Simple Spectral
Access Protocol Version 1.1. ArXiv e-prints arXiv:1203.5725.

Tramacere, A., Giommi, P., Perri, M., Verrecchia, F., Tosti, G.,
2009. Swift observations of the very intense flaring activity of Mrk
421 during 2006. I. Phenomenological picture of electron accelera-
tion and predictions for MeV/GeV emission. A&A 501, 879–898.
doi:10.1051/0004-6361/200810865.

Vrtilek, S.D., Raymond, J.C., Garcia, M.R., Verbunt, F., Hasinger,
G., Kurster, M., 1990. Observations of Cygnus X-2 with IUE -
Ultraviolet results from a multiwavelength campaign. A&A 235,
162–173.

Walcher, J., Groves, B., Budavári, T., Dale, D., 2011. Fitting the
integrated spectral energy distributions of galaxies. Ap&SS 331,
1–52. doi:10.1007/s10509-010-0458-z.

Wright, M.H., 1996. Direct Search Methods: Once Scorned, Now
Respectable, in: Griffiths, D.F., Watson, G.A. (Eds.), Numerical
Analysis 1995 (Proceedings of the 1995 Dundee Biennial Confer-
ence in Numerical Analysis), CRC Press. pp. 191–208.

18

http://dx.doi.org/10.1086/510549
http://arxiv.org/abs/1312.3249
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://arxiv.org/abs/1110.0528
http://arxiv.org/abs/1203.5725
http://dx.doi.org/10.1051/0004-6361/200810865
http://dx.doi.org/10.1007/s10509-010-0458-z

	1 Introduction
	2 SED Analysis with Iris
	2.1 A Use Case

	3 User Models and Templates
	3.1 Custom Python Functions
	3.2 Table Models
	3.3 Template Libraries

	4 The Iris Stack
	5 The Iris Architecture
	5.1 Inversion of Control

	6 Iris Built-in Components
	6.1 SED Builder
	6.1.1 Importing data
	6.1.2 Saving data

	6.2 NED SED Service
	6.3 SED Viewer
	6.4 Sherpa: Model Fitting
	6.4.1 Fitting Options

	6.5 Science Tools
	6.5.1 Redshifting
	6.5.2 Interpolation
	6.5.3 Integration

	7 Plug-ins: the Software Development Kit
	7.1 Anatomy of a Plug-in
	7.1.1 Menus and Buttons
	7.1.2 Command Line
	7.1.3 SAMP Handlers
	7.1.4 Custom Events
	7.1.5 SED attachments

	7.2 Plug-in examples
	7.2.1 ASDC — stable
	7.2.2 Vizier — experimental
	7.2.3 R — experimental

	7.3 Other Extensibility Points
	7.3.1 Custom File Readers
	7.3.2 Persistence

	7.4 How to write an Iris plug-in

	8 Future Plans
	9 Conclusions

